Progress in Developing the Fiber-link of 188 cm Telescope and HIDES

Eiji Kambe (Okayama Astrophysical Observatory/NAOJ)

with

Michitoshi Yoshida, Hideyuki Izumiura , Hisashi Koyano, Yasuhiro Shimizu, Ki'ichi Okita, Akihiro Sakamoto (OAO/NAOJ), Shogo Nagayama (Mitaka/NAOJ), Bun'ei Sato (Tokyo Inst. Tech.), Tomoyasu Yamamuro (Optcraft)

contents of my talk

- what is HIDES (+188 cm telescope+OAO)?
- purposes of HIDES fiber-feed project
- features & specifications of HE (high efficiency) fiber-link
- current status of the project

what is HIDES ?

• high-resolution echelle spectrograph attached to 188 cm reflector the most favorite open-use instrument at OAO we just have the tenth year anniversary since its first-light on Apr 1999

some specifications

wavelength region: 360 nm~1000 nm
simultaneous wavelength coverage of about 375 nm (red cross disperser)
thanks to the 3 mosaic CCDs since Dec 2007

R and \$\phi\$: R=69,000 (slit width of 200um; \$\phi\$ = 0.75 arcsec)

maximum R~100,000

overall efficiency (telescope+spectrograph): about 3 % @ 500 nm
but light loss at the entrance slit is quite large for typical seeing size of 1.5 arcsec at Okayama
options

iodine cell (2000.10~):

current rv measurement accuracy $\sim 2 \text{ m/s}$ (over a few weeks) 6 m/s(over years)

image rotator

Photon counts (Procyon; per 30 expt; per R=200,000)

HIDES has an iodine cell to measure stellar radial velocity
very accuratelycurrently 2 ~3 m/s in best case

purposes of HIDES fiber-feed project

• it is one of two major projects in "the HIDES upgrade plan", which is started in FY2005, to keep its competitive power in astronomy

wider wavelength coverage → 3 mosaic CCD
higher throughput and higher rv measurement accuracy
→ HIDES fiber-feed

• we aim to improve the throughput of the system by one magnitude

we can monitor four times as many as target stars for exposure time limited observations $(2.51^{**}0.5)^{**3} \sim 4!!$

example of sciences :

exoplanet search: monitor more than 1,000 targets asteroseismology: more than one solar-type stars early-type nrp stars down to 7 or 8 mag. (enabling more collaborations) • this project is the basic research for our future instrumentations

accumulation of know-how on fiber-feed spectrographs

fiber modal noise and throughput for higher SN

high-resolution spectra and also for higher rv measurement accuracy building infrastructure at OAO

lab, low-cost test spectrograph, clean booth, etc.

features of HE (high efficiency) fiber-link

• to obtain higher throughput for typical seeing condition at OAO while maintaining high resolution, we carefully designed the optics of the fiber-link

link Cassegrain focus to coude focus by optical fiber 3rd mirror (0.8) × 4th mirror (0.8) × window (0.9)=0.58 → 0.9X
2.7 arcsec FOV and image slicer at the entrance of HIDES slit efficiency 0.4 (0.75 arcsec, R~69,000)
→ 0.8X (FOV 2.7 arcsec/3 slices; R~50,000)
(convert F from18 to 3.3 by a microlense at the fiber input to suppress FRD)

there is a trade-off between resolution/number of slices and wavelength coverage $R \sim 50,000$ (1 arcsec; 3 slices) but for $\lambda > 450$ nm (red cross disperser) no limitation for blue cross fiber

image slicer and sliced image

HE output (coude focus)

• efficiency of fiber couplings, FRD, and modal noise property will be examined carefully by a low-cost test spectrograph and a star simulator

→ detailed optics, like star image slice or pupil slice, will be determined after tests at lab

• an iodine cell is installed for radial velocity measurement is independent RV fiber-link (+fiber scrambler) necessary ? examine effects of modal noise, complicated IP by the image slicer, & etc. *important to setup next target of rv measurement accuracy*

current status of the project

- FY2005: conceptual design phase
- FY2006: preliminary design phase preliminary design of fiber-link optics (referring to HARPS's experience) choice and purchase of optical fibers re-designing of current GUI system, preparation of optical lab
- FY2007: start finalizing designing

continuous study of fiber-link optics including image slicer, etc. final mechanical design of the Cassegrain unit design and order of a star simulator investigation of fiber-end polishing method and preparation of jigs, etc.

• FY2008:

order of the Cassegrain unit (frame and optical components) design and order of the HE fiber input optics at Cassegrain focus

and after the Jeju WS ...

design and order of HE optics at coude focus including image slicer design and order of F-ratio convert optics for calibration lights

on Cassegrain unit

preparation for modification of the coude pre-optics for the fiber-links design of a low cost test spectrograph and order its parts

• FY2009:

improvement of Cassegrain unit (balance weight, cover) modification of coude pre-optics assembly (and installation of new WFV) design, order parts of, and assemble of calibration source unit design and manufacture of mechanical parts for fiber wiring adding the fiber-link option to the control software (preliminary version)

at present: making fiber cables (polish and sheath of the bare optical fibers) overall assembly and adjustment

to do: manufacture of iodine cell temperature control system extensive tests of HE fiber-link, fiber agitator etc.

attachment to HE-output assembly

modified coude pre-slit optics

new WFV

with 1 um polishing sheet

close to first light, maybe!

with 5 um polishing sheet

with 0.3 um polishing sheet