

Outline of this talk

- 1. Disks around young intermediate-mass stars
- Spatially resolved images of protoplanetary disks
- 3. Temporal change of disk structure
- 4. Primordial to debris disks
- 5. Direct imaging of extra-solar planets

Targets							
source	sp.	d	age				
	type	(pc)	(Myr)	HD 163296	A1	122	4
Herbig Ae stars (The et al. 1994)			HD 169142	A5	145	8	
AB Aur	A1	144	3	VV Ser	B6	310	5
MWC 480	A5	170	5	HD 176386*	B9	140	2
HD 34282	A3	350	6	HD 179218	A0	240	1
HD 139614	A7	140	10	HD 190073	A2	>290	1
HD 142527	F6	140	2	Vega-like stars (e.g.,Sylvester et al.)			
HD 144432*	A9	145	4	HD 131885	A0	121	_
HD 149914	B9.5	165	<1	HD 184761	A5	65	ZAMS
HD 150193*	A2	150	6	HD 191089	F5	54	<100
KK Oph*	A8	160	5	HD 218396	A5	56	30
(* known binaries)							

Imaging with Subaru

- Subaru 8.2m + CIAO (Coronagraphic Imager with Adaptive Optics)
- H-band (1.6 μm) imaging
- spatial resolution ~0".1
- occulting mask $\phi = 0".5 1".0$

We can observe...

- outer disk (r > 50 AU)
- scattered light dust grains in the upper layer of a flared optically thick disk (L_{IR}/L_{*}~0.1)
- detailed morphology

Reso	ved	Disks	at 1.	.6 μm

source	ce L _{disk} / L _(* + IR)		morphology		
optically thick (protoplanetary) disks					
AB Aur	(1.2±0.2)×10 ⁻²	120–580 AU	spiral		
HD 150193	(1.3±0.3)×10 ⁻²	59–225 AU	truncated by companion?		
HD 142527	(3.2±0.2)×10 ⁻²	105–420 AU	banana		
HD 163296	~2×10 ⁻⁴	232–430 AU	ring (ansae at opt.)		
HD 169142	(1.5±0.2)×10 ⁻³	123–200 AU	without structure		
HD 100546 ⁽¹⁾	(1.6±0.2)×10 ⁻²	46–380 AU	(spiral at opt.)		
optically thin (debris) disks					
HD 141569 A (2)	(2.2±0.2)×10 ⁻³	190–891 AU	ring, (spiral at opt.)		
HR 4796 A (³⁾	(2.4±0.5)×10 ⁻³	44–104 AU	ring		
β Pic	(1.8±0.4)×10 ⁻³	50–140 AU	warp, (rings at opt./ MIR)		
(1) Augereau et al. (2001), (2) Weinberger et al. (1999), (3) Schneider et al. (1999					

Detection of a very faint disk, but...

- HD 163296 (Herbig Ae star, 4 Myr, A1)
- Keplerian disk has been known, bright in (sub-)millimeter
- Disk radius ~430 AU
- L_{scat}/L_{total} (1.6 µm) ~ 2 x 10⁻⁴ (\leftrightarrow 2 x 10⁻³ for β Pictoris)

Observed in 1998)

Subaru/CIAO (Fukagawa et al. submitted, Observed in 2004)

<text><list-item><list-item><list-item><list-item><list-item><list-item>

what initiated excess tells us
 Protoplanetary Disks Disk fraction appears to decay with timescale of 2.5 Myr (exponential decay), but the lifetime could be stellar-mass dependent. Disks around lower mass stars can live longer. Large scatter in disk morphology and lifetime indicates significant dispersion in initial conditions of planet formation. Evolution could proceed from inside-out.
 Transitional Disks Transition time from primordial to debris might be less than or similar to 1 Myr. The number of transition disks relative to primordial disks tends to increase with stellar age. Higher mass stars move to the debris disk phase faster than lower mass stars.
 Debris Disk Higher frequency were observed for higher mass stars. Evolution appears to proceed from inside-out. Warm dust (< 30 micron) is rare for > 300 – 500 Myr stars. Connection to planetary systems is still unclear.

What infrared excess tells us

Plane	Planetary Companion Candidates Imaged so far						
Star	Age (Myr)	Stellar mass (M_{\odot})	Companion mass (MJ)	Projected Separation (AU)	Reference		
Fomalhaut	100—300	2.0	≤ 3	98 (~119)	Kalas et al. (2008)		
HR 8799	60—150	1.5 ±0.3	7[5–11], 10[7– 13], 10[7–13]	68, 38, 24	Marois et al. (2008)		
β Pictoris	12	1.8	~8	8	Lagrange et al. (2008)		
CT Cha	2±2	0.7	17±6	440	Schmidt et al. (2008)		
AB Pic	~30	K2	~13	~260	Chauvin et al. (2004)		
GQ Lup	< a few	0.7	1 ~ 40	114±33	Neuhaeuser et al. (2005)		
2M1207	8 ±4	0.024	5±2	55	Chauvin et al. (2004)		

Planet imaging with Subaru/HiCIAO

- Project: SEEDS (Subaru Strategic Explorations of Exoplanets and Disks Survey)
- 2 + 3 years
- AO188 + coronagraph
- Jupiter-mass bodies can be imaged
- contrast: 10^{-5.5} at 1"
- observing techniques optimized for planet detection (ADI, SDI) can be used
- Targets: PMS stars in SFRs, debris disks, nearby stars, open cluster members, nearby moving groups
- Science run starts from this fall