

Orbital Evolution of Planets around Evolving Low- and Intermediate-Mass Stars

Masahiro IKOMA (Tokyo Tech, Japan)

Planet Formation around Solar-Type Stars

Orbits of Planets around Evolved Stars

No planet inside ~ 0.6AU around giants.

Data from: www.exoplanet.eu Sato et al. (2008)

Orbits of Planets around Evolved Stars

ECCENTRICITIES of the planets around **Clump giants** are **small** relative to those around solar-type dwarfs.

Post-Main-Sequence Evolution

Do such properties result from the evolution of their parent stars?

Evolution = Expansion

INFLATED PARENT STAR

(1) engulf planets

(2) exert a tidal force on planets

3.6 3.5 (3) **lose its mass**, which results pushing planets outward

(Stellar Data from Lejeune & Schaerer 2001)

Fate of the Solar System (Previous Studies)

⁽Rasio et al. 1996)

Orbital Evolution of Planets = Tide vs. Mass Loss

Assumptions, Equations, etc.

-mass loss

MAJOR Assumptions:

- equilibrium tide fully convective envelope
- stellar rotation << planetary revolution

EQUATIONS:

$$\begin{aligned} \frac{1}{a}\frac{da}{dt} &= -6\frac{k}{t_f}\frac{m_p}{M_s}\left(1+\frac{m_p}{M_s}\right)\left(\frac{R_s}{a_p}\right)^8 \frac{f_1(e^2)}{(1-e^2)^{15/2}} + \frac{\dot{M}_s}{M_s} \\ \frac{de}{dt} &= -27\frac{k}{t_f}\frac{m_p}{M_s}\left(1+\frac{m_p}{M_s}\right)\left(\frac{R_s}{a_p}\right)^8 \frac{ef_3(e^2)}{(1-e^2)^{13/2}} \\ t_f: \text{ convective friction time; } k: \text{ apsidal constant} \end{aligned}$$

STELLAR MODELS: Lejeune & Schaerer (2001)

PARAMETERS:

- Stellar mass, *M*s = 1.0, 1.5, 2.0, 2.5, 3.0 MSun Metalicity, *Z* = 0.02
- Planetary mass, *m*_p = 1, 10 M_{Jup} Initial orbit, *a* = 0.1-2AU & *e* = 0.01-0.9

Examples of Orbital Evolution

• Both *a* and *e* decrease in such a way that periapsis is kept constant.

• Stellar mass loss makes a negligible contribution.

a & e in HB (2.5M_{Sun} Star)

• Eccentricity ranges between 0 and 0.8 for *a* < 2 AU.

a & *e* in HB: Sensitivity to Planet Mass

Effect of stellar tide is somewhat stronger for more massive planets.

a & e in HB: Sensitivity to Stellar Metalicity

Effects of different stellar metalicity seem to be small.

a **&** *e* in HB: Sensitivity to Stellar Mass

• Eccentricities of detected clump giants are low. \rightarrow initially low?

Measured semimajor axes are somewhat larger. → initially distant?

ORIGIN OF LOW ECCENTRICITIES AROUND CLUMP GIANTS

Widespread Idea for the origin of eccentric planets around solar-type stars

Eccentric Planet and/or Hot Jupiter

e.g., Weidenschiling et al.

ORIGIN OF LOW ECCENTRICITIES AROUND CLUMP GIANTS

How can we explain it?

- Formation of gas-giant planets is less frequent around intermediate-mass stars than around solar-type stars.
- Multi-planet systems are rare, so that orbital instability rarely happens around intermediate-mass stars.

DISCUSSION: ORIGIN OF LOW-ECCENTRICITIES

Correlation between Stellar Metalicity and Planetary Eccentricity in the case of Solar-Type Stars

Low-Mass Giants

• Two of them are consistent with our results

• The other three seem not to have undergone RGB phases.

Summary and Conclusions

- I have simulated orbital evolution of planets around evolving low- and intermediate-mass stars.
- Clump giants
 - Planets of a < 0.5AU are likely to have been engulfed by their parent stars, which is, however, not fully consistent with observational results.
 - Our theoretical model that assumes the planets' eccentricities in the MS phase range uniformly from 0 to ~1 does not account for low eccentricities of the detected planets, which may means their eccentricities were originally low.

Low-mass giants

Some of them seem not to have yet undergone the RGB phase of their parent stars.

Need more samples!