宇宙すばる望遠鏡への道

戎崎俊一

理化学研究所情報基盤研究部

宇宙ステーションの長所

- ・広大な真空領域
- 理想的な平行光線(星): <10 ⁻⁸rad
- 微小重力環境
- ・ 人間の活動
- ・ 豊富な電力
- 太いコミュニケーションリンク

宇宙ステーションの短所

- 振動
- 化学的污染
- コスト

長所を生かし、短所を緩和する方法

- 組立てと最終調整
 - 広大な真空領域、
 - _ 星像を使った光学試験
- 打ち上げ時の制約を緩和
 - 広大な太陽電池パネル
 - 大きな通信アンテナ
- スラスターで放機
 - 振動、化学汚染を避ける
- ・ 回収して、装置の修理・改善・オーバーホール
 - ハッブル宇宙望遠鏡サービスミッションの次世代技術

宇宙工学的意義

- 大型精密装置の組立て技術
- 広大な真空領域
- 平行光線: < 10 -8 rad以下
- 巨大な付属物 (太陽パネル、アンテナ)
- 月や火星への有人ミッションへのステップ

JEM/EFワークベンチ

- #9と#10の両方を使う
 - 5000kgまでOK
- 500kgのワークベンチ
- 4500kgの望遠鏡
 - 口径10mの場合10kg/m^2の超軽量鏡
 - Space SUBARU
 - Super OWL

宇宙すばる望遠鏡

- 口径10mの可視光宇宙望遠鏡
 - =200nm ~ 5000nm
- 高空間分解能
 - 0.015**秒角**@500nm
- 高分散分光
 - $-R=10000\sim100000$
- 宇宙ステーション上での展開・放機・回収

高空間分解能·高分散分光(1)

- 超巨大ブラックホール形成過程
 - 中質量BHを含む星団
 - ・サイズ/速度分散の測定
 - ・中質量BHとの位置関係
 - 銀河中心にBH連星/BH星団
 - AGNやジェットの性質
 - BHの合体による重力波バースト
 - 1週間に1回程度(HzからmHz)

高空間分解能·高分散分光(2)

- 宇宙元素合成
 - 金属元素欠乏星(金属量が太陽の1000分の1)
 - ・元素組成パターンに個性(汚染した超新星の情報)
 - 進化していない星(太陽の100分の1の暗さ)
 - 超高感度
 - 紫外線分光 Be 330nm B250nm
 - 中性子捕獲元素 (Ba, Eu, Ag, Pb, U, Th)
 - ・原子時計による星の年代の直接測定

超高精度測光

- 10万分の1の精度
 - 地上では不可能 / 宇宙では可能
- 前面通過による減光
- 惑星系の発見(木星・地球)
- ・ 磁気的な活動(黒点、フレアなど)
- ・ 星震学による星の内部探求

放機·回収

- ・ 独立衛星化モジュール
 - 通信·太陽電池
 - 共通化バス
- HTVの改造を改造したサービス機
- EUSOの独立衛星化で実験
 - 日本の貢献できないか?

共軌道プラットフォーム

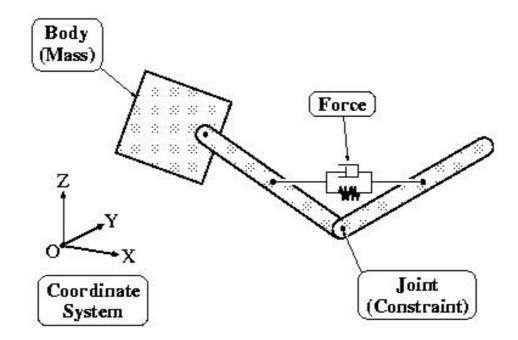
- 宇宙ステーションに近い軌道
 - 太いリンク、往還
- インテリジェントなロボット
- 往還機(HTV改造)
- 宇宙すばるアレイ
 - 可視光干渉計
 - 第2地球の直接撮像

開発項目

- 超軽量鏡(<10kg/m^2)
 - 海老塚の発表
- ・ 超伝導素子の開発
 - 志岐の発表
- 組み立てシミュレーション
 - 長田の動的解析プログラム
 - 鏡面変形のシミュレーション
- 宇宙工学的開発

並列化 O(N) アルゴリズムによる動解析

Dynamical Analysis Based on a Parallel O(N) Algorithm


長田隆

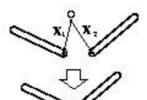
Takashi NAGATA

理化学研究所 ものつくり情報技術統合化研究プログラム V-CAD 用高速計算デバイス開発チーム

V-CAD High Speed Computer System Team Integrated V-CAD System Research Program The Institute of Physical and Chemical Research (RJKEN)

Fundamental Concepts of Multibody Dynamics

9

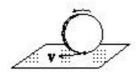

Kinematical Constraints

Helenemic Constraints

Constraints described only by the generalized coordinate vector **q** and time *t* as

$$\delta(t,\mathbf{q})=0.$$

(Ex.) Spherical Joint.


$$\begin{array}{ll} \boldsymbol{\delta}(t,\mathbf{q}) = \mathbf{x}_1 - \mathbf{x}_2 \\ = \mathbf{0} \ . \end{array}$$

Nenbelenemic Censtraints

All the constraints that are not holonomic. There is no general representation for them.

Velocity Constraints

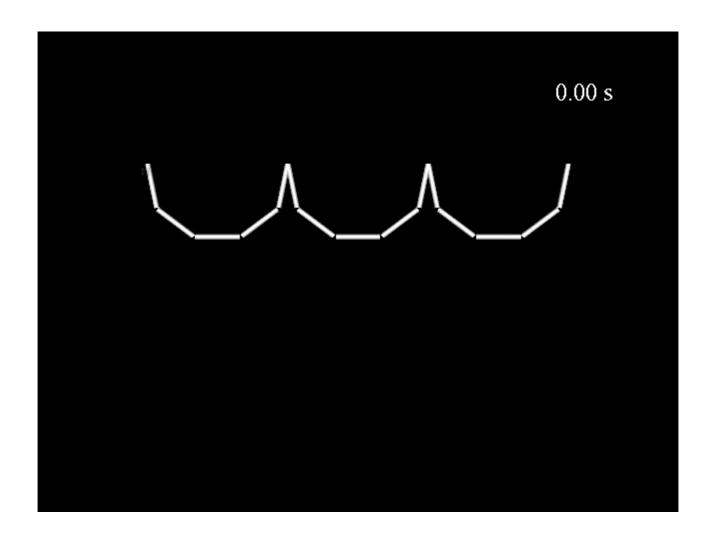
(Ex.) Rolling without Slip,

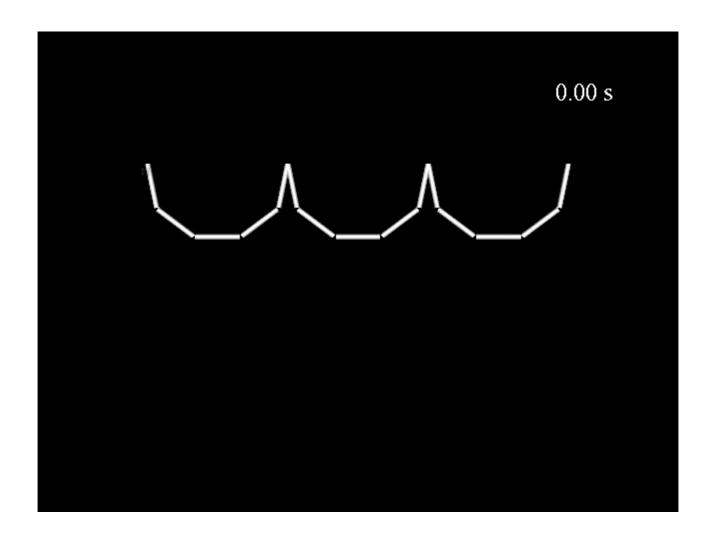
$$\Delta(t, q, \dot{q}) = v$$

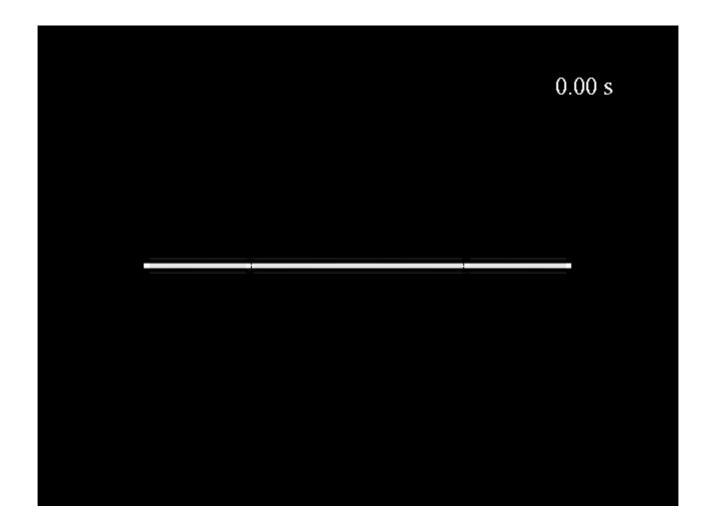
= 0.

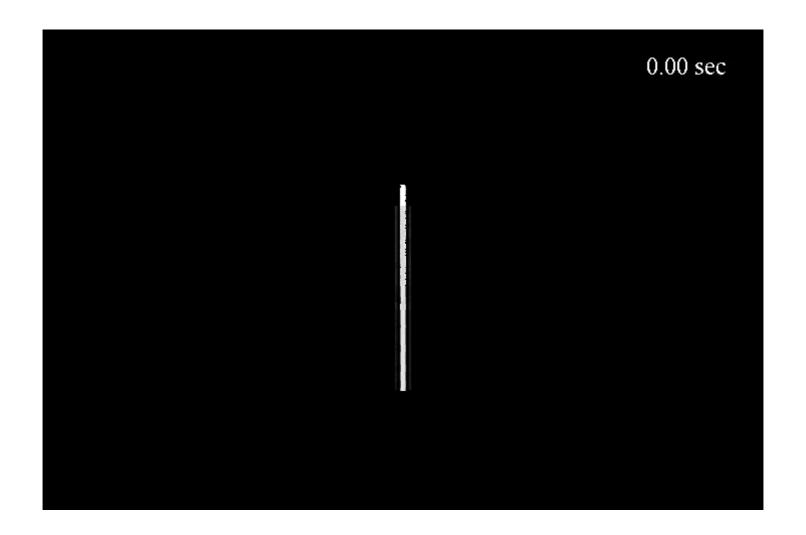
Inequality Constraints

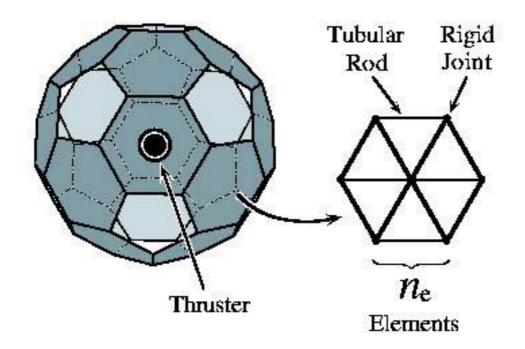
(Ex.) Latch Mechanism.

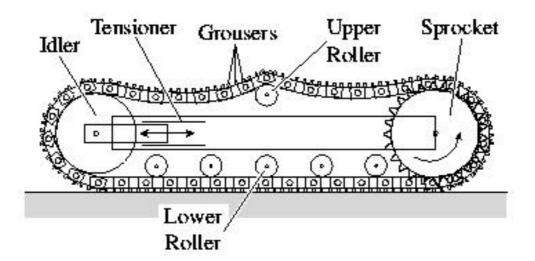



$$\begin{array}{ll} \boldsymbol{\delta}\left(t,\,\mathbf{q}\right) = \; \boldsymbol{\theta} - \boldsymbol{\theta}_0 \\ \geq \; 0 \; . \end{array}$$

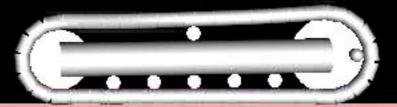

力学的拘束の取り扱い


- ・力学における古典的大問題
 - ラグランジュの未定係数法
 - シミュレーションにおいての適用が困難だった
 - 悪条件化、特異点通過の問題
 - _ 例∶数值相対論
- ・長田のアルゴリズムが解決




Parallel Simulation of a Flexible Space Structure

C60 fullerene structure with a thruster.


11

Simulation of a Crawler

Mass kg	3979.99
Fidl Length [m	9.592
Length of the track link in	0.195
Radius of the idler m	0.2145
Radius of the sprocket im	0.22
Height of the aprocket tooth m	0.04
Radius of the rollers in	0.05

Ł N/m	1.0×10^{8}
c Na/m²	5.0 × 10°
to m/s	0.01
140	0.9 (for the ground) 0.1 (for the others)
DOF withou	d Constraints = 153
Number	of Constraints = 101

まとめ

- ・宇宙すばる望遠鏡
 - 口径10mの可視光·近紫外線望遠鏡
- ・理研における技術開発
 - 超軽量鏡の開発
 - 素形材研究室との協力
 - 組み立てシミュレーション
 - 情報基盤研究部の機能
 - 次世代超伝導素子の開発
 - ・イメージ情報技術開発室

宇宙ステーションの位置づけ

- 宇宙ステーションはなくならない
 - 大きな資金的困難に直面しつつも
 - 目に見える成果が要求される
 - 天文学はいいお客さん
- 組み立て工場として使うことを考えよう
 - _ 宇宙すばる
 - 干渉計
 - 大型赤外望遠鏡

理研の役割

- 宇宙機器開発の技術センター
 - 超軽量鏡、高度な光学機器
 - シミュレーション・ソフトウエア
 - 検出器
- 技術の蓄積が可能
 - 他分野への転用が容易
 - エンジニアが生息しやすい
 - 柔軟な雇用制度