岡山UM 2016/9/8

クェーサーの光度変化とアウトフローの 時間変動の相関

共同研究者: 三澤透¹, 諸隈智貴², 小山田涼香¹, 和田 久¹ (1:信州大学, 2: 東京大学)

- ・導入・研究の目的
- 観測
- 結果
- 考察
- 展望・まとめ

- 1) クェーサーの構造とアウ トフローの吸収線
- アウトフローの時間変動
 と研究目的

アウトフローの観測: クェーサーに付随する吸収線 3/15

アウトフローの時間変動

4/15

電離状態変動シナリオと研究目的 5/15

浅くなる

or 深くなる

・最も有力なシナリオ

クェーサーの<mark>光度変動</mark>がア ウトフローガスの電離状態に 変化を与えるというシナリオ

アウトフロー

由来の吸収線

・研究目的

mini-BAL, NALを持つクェー サーのアウトフローの電離状 態変動(VIS)シナリオの検証

VIS: Variable Ionization State

光度変動と吸収線の変動が同期する 傾向を示せばVISを支持する結果!!

- 考察
- 展望・まとめ

同時モニター観測によるVISシナリオの検証 7/15

・導入・研究の目的

mini-BALクェーサーHS1603+3820の 分光・測光同時モニター観測について

• 展望・まとめ

HS1603が有するCIV mini-BAL(岡山)

光度曲線と吸収線等価幅の変動傾向 10/15

Horiuchi et al. (2016)

光度曲線と吸収線等価幅の変動傾向 11/15

Horiuchi et al. (2016)

クェーサーから噴き出す ガスの変動メカニズムに新知見 - 国内の小口径望遠鏡による挑戦 -

Webリリース: クェーサーから噴き出すガスの変動メカニズムに新知見 信大独創図鑑 http://www.shinshu-u.ac.jp/zukan/report/post-4.html

・ 導入・研究の目的

・観測
・結果
・考察
・尾望・まとめ
1) 先行研究との比較
2) 観測された光度変動は アウトフローの変動に 影響を与えるのか?

VISシナリオを支持する先行研究との比較 13/15

光度-等価幅分布における比較 14/15

観測された光度変動でCIVの存在比は変動するのか? 15/15

まとめ

16/15

- 本研究では現在時間変動の原因として最も有力な
 『電離状態変動シナリオ』を検証すべく測光・分光同時モニター観測
 を3年以上にわたり行った (Horiuchi et al. 2016, PASJ, tmp, 53).
 - 1. HS1603+3820に、光度とCIV mini-BALの変動傾向の同期を確認 した. この傾向を同時モニターで確認したのは本研究が初!!
 - しかしながら、VISシナリオは光度変動のみでは完全に説明できない. mini-BALクェーサーHS1603の光度変動の最大値は0.23等級であり、VISをサポートするには程度が小さい.

上記の結果は、VISシナリオの補助機構の存在を示唆する結果である.補助機構の候補はX線で観測されるWarm Absorberの変動である.

VISシナリオの補助機構の考察

19/20

X線分光観測で観測される遮蔽ガス(候補はWarm Absorber ;e.g. Krongold et al. 2007)の光学的厚さが変動することで、下流に存在 するアウトフローガスの電離状態に影響を与えている可能性がある! → 補助機構はWarm Absorberの変動!?

イオンは強い光を受けると電離する(<mark>光電離</mark>)

Structure Function(SF)による光度変動解析

 SF: 光度変動の大きさの平 均値を各期間でプロットし たもの.

$$S = \sqrt{\frac{\pi}{2} \left\langle \left| \Delta m(\Delta \tau) \right| \right\rangle^2 - \left\langle \sigma_n^2 \right\rangle}$$

 mini-BAL, NAL QSOの SFsに対しモデルフィット (ベキ, 漸近関数).

$$S_p(\Delta \tau) = \left(\frac{\Delta \tau}{\Delta \tau_p}\right)^{\gamma}$$
 ベキ
関数

 $S_a(\Delta \tau) = V_a(1 - e^{-\Delta \tau / \Delta \tau_a})$ 漸近関数

 mini-BAL, NALクェーサー の光度変動の仕方に大きな 差はない.

Structure Function(SF)による光度変動解析^{16/21}

- 各期間における光度変 動の大きさ| Δ m | もOver Plotした.
- mini-BAL, NAL QSOの |*∆ m*|の最大値 (u-band)

mini-BAL QSO : 0.23 mag (HS1603+3820)

NAL QSO : 0.30 mag (Q1700+6416)

0.3等級はサンプル中 で最大の光度変動

SFの波長依存性 (our quasar)

- ・ 光度変動の波長依存性 を推定.
- Fitting Model (Vanden Berk et al. 2004) : 黒点線

$$S_1(\lambda) = A\exp(-\lambda/\lambda_0) + B$$

mini-BAL, NALクェーサー
 も、短波長側の方が光度
 の変動が大きいという性
 質を示す (一般のクェー
 サー同様).

SDSS: HS1603のスペクトル

時間変動の原因は何?:ガスの横断と電離状態の変動			
ガスの横断		電離状態変動シナリオ	
V_{φ} QSO V_{φ} Z_{2002} Mar. Z_{2003} Jul. V_{ary} !			アウトフローの 電離状態が変動 → ガスの存在比が変動 → 吸収線が変動
間からそれることで吸収線が変動			態の変動はBALでは 分かれている
Misawa et al. (2007)では否定的 (理由: mini-BAL中の、異なる速度成 分をもつ複数のガスが一斉に変動!!)			ni-BAL(とNAL)クェーサー G研究のターゲット!!
	ガスの視線上の横断が 有力		電離状態の変動が 有力
BAL	Capellupo et al. (2012, 2014), Gibson et al. (2008), Wildy et al. (2014), etc		Hamann et al.(2011), Trevese et al. (2013), Wang et al. (2015), Grier et al. (2015), etc
mini-BAL	Muzahid et al. (2015) (ただしEUV領域での検証)		本研究で賛否を検証

時間変動の原因は?: ガスの横断, 散乱光の増減, 電離状態の変動 8/20

観測された光度変動でCIVの存在比は変動するのか? 18/20

クェーサーの構造とアウトフロー

28/1

(効果 i) 降着円盤から角運動量を排除し、新たなガスの降着を促進 →クェーサーの成長に重要 (Murray et al. 1995, Proga et al. 2000)

(効果 ii) 大量のエネルギー、金属を放出 → 母銀河・銀河間空間の化学進 化も促進(Di Matteo et al. 2005; Moll et al. 2007; Dunn et al. 2012)