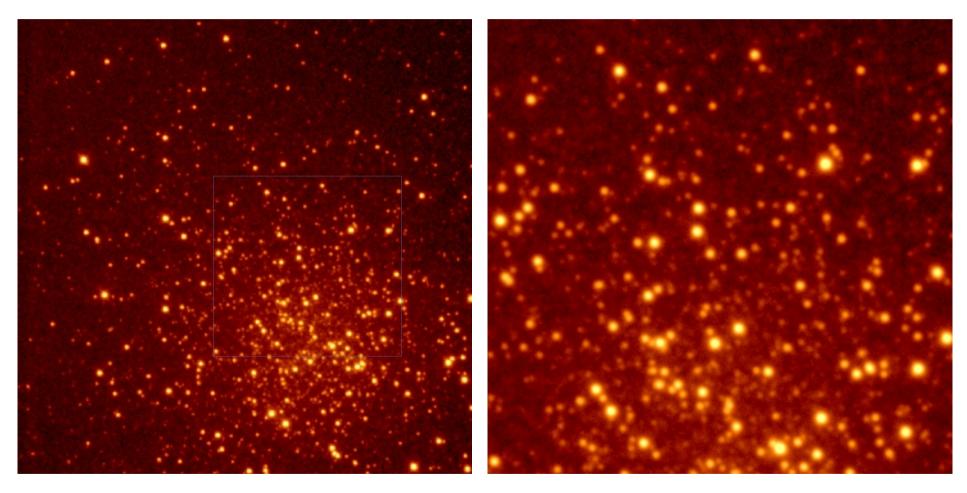
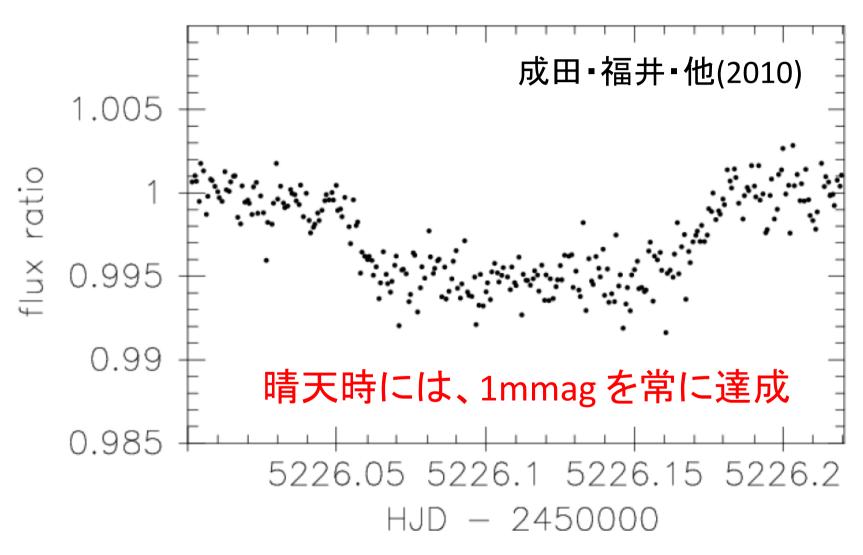
岡山近赤外撮像・分光装置 ISLE の 現状報告

2013/08/01

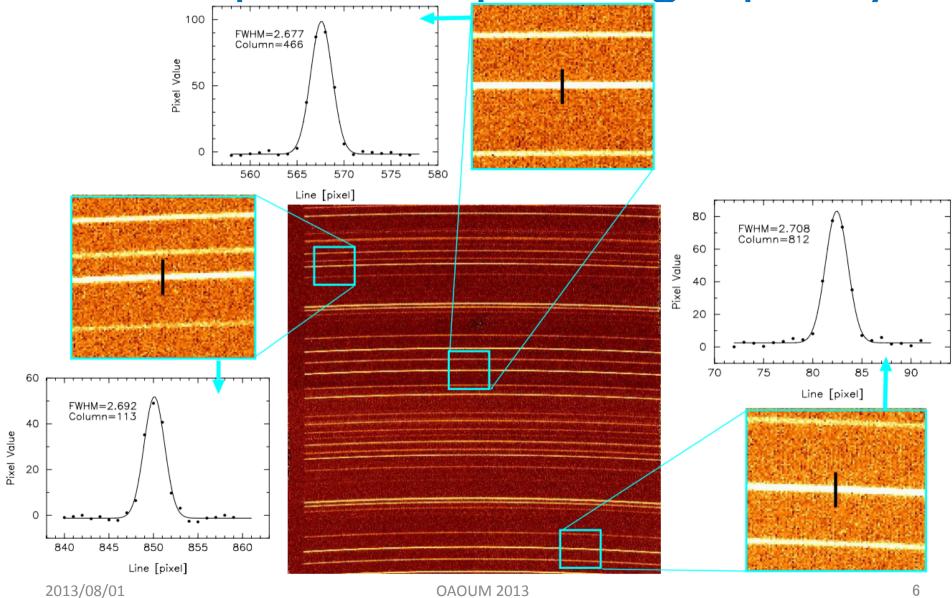
柳澤顕史、福井暁彦、黒田大介、清水康広、沖田喜一、小矢野久、坂本彰弘、中屋秀彦(国立天文台)


ISLEの特徴

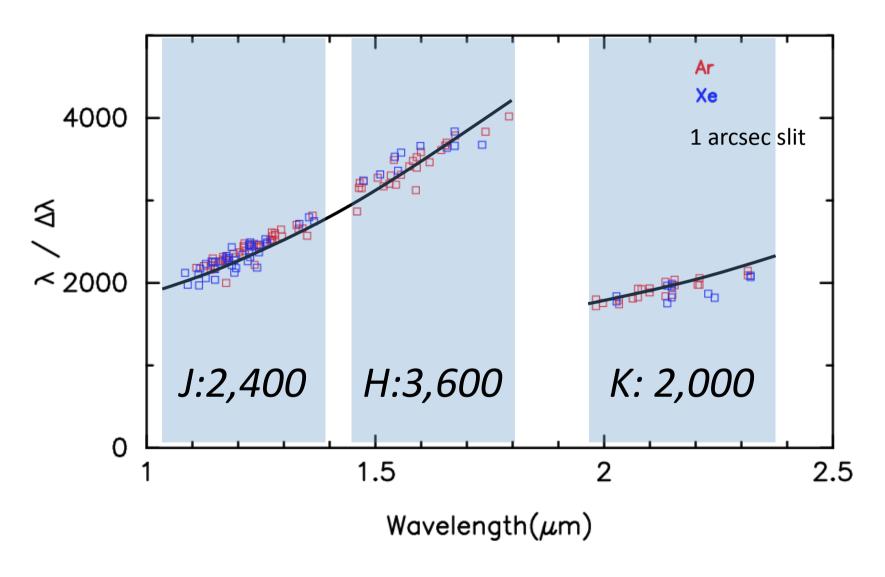
- 撮像・分光装置
 - 視野4分角、0.25 arcsec/pix, 低•中分散分光
- シャープな結像性能
 - FWHM=0.75 arcsec, Crowded Field Photometry可
- ・ サブミリ等級の測光精度
 - 1ミリ等級を実現。世界トップレベル
- 東アジアで唯一の共同利用近赤外分光装置
 - 低分散(R=350-500),中分散(R=2,000-4,000)
 - 効率 10-15%
- 優れた追尾性能
 - 分光ノディング機能
 - 微分大気差補正込オフセットガイド機能
 - ハイブリッド・オートガイド機能(sub-pixel精度で星を固定)
- 低い読み出しノイズ
 - HAWAII-1K としては、世界一の低ノイズ

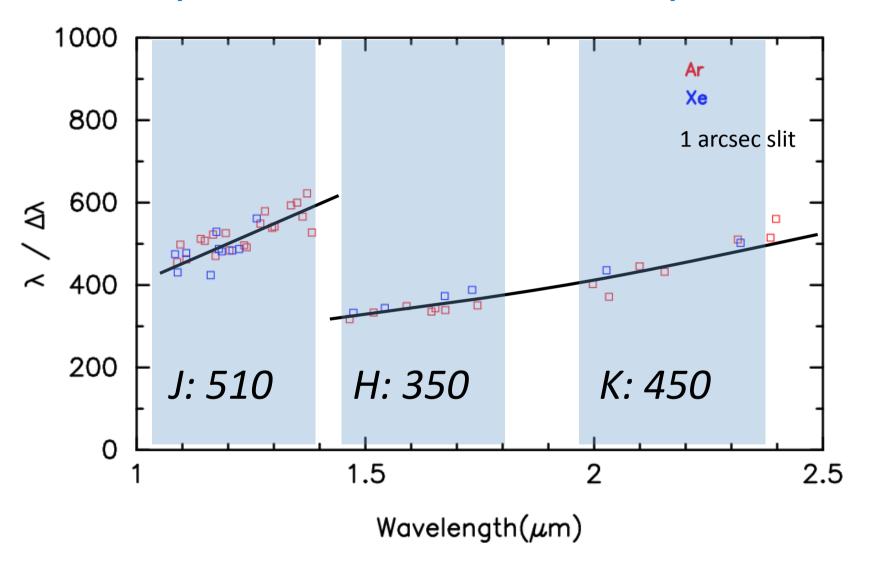

2013/08/01

ISLE image of M13 in J-band

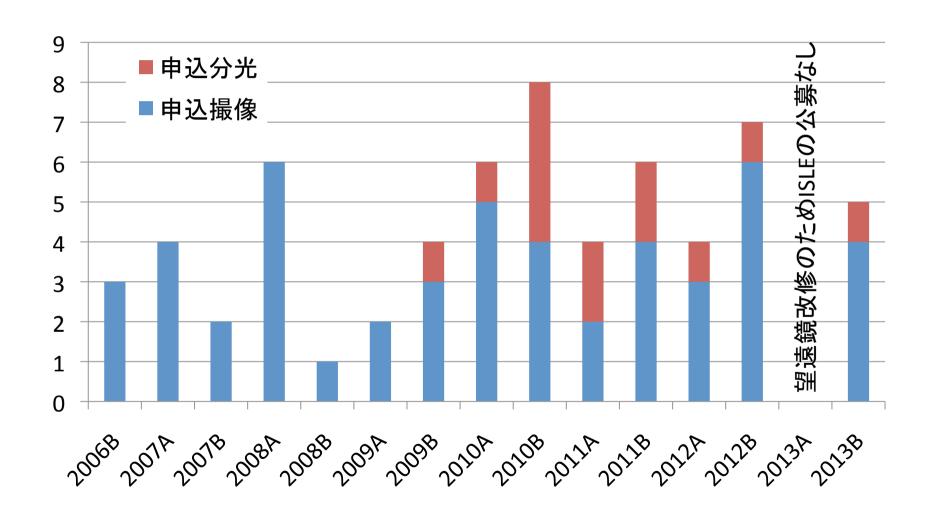


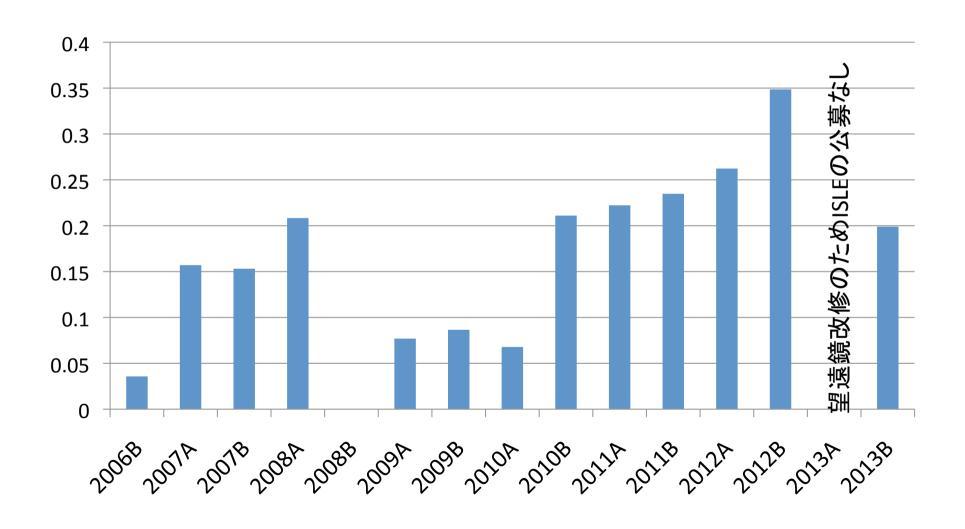
2013/07/24, J-band, 10sec ×16, seeing: 1 arcsec, 10 arcsec dither 望遠鏡制御系改修後に取得した画像。以前と変わらぬ画像が取得できることを確認。


ISLE による 系外惑星 HAT-P-13b の トランジット観測


ISLE: Spectroscopic image quality

ISLE Sp. Resolution: Medium Dispersion


ISLE Sp. Resolution: Low Dispersion


ISLE: この1年の運用状況

- 共同利用8年目(2006Bより)
- 共同利用実績:
 - 撮像 3件、分光 0件
 - 2012B: 38夜(3件) / 115夜(10件) 35%
 - 2013A: 望遠鏡改修につき、ISLEは非公開
 - 合計: 38夜(3件) / 115夜(10件) 35%
- 取得フレーム数
 - 20,681 frame (Eng. Time を含む)

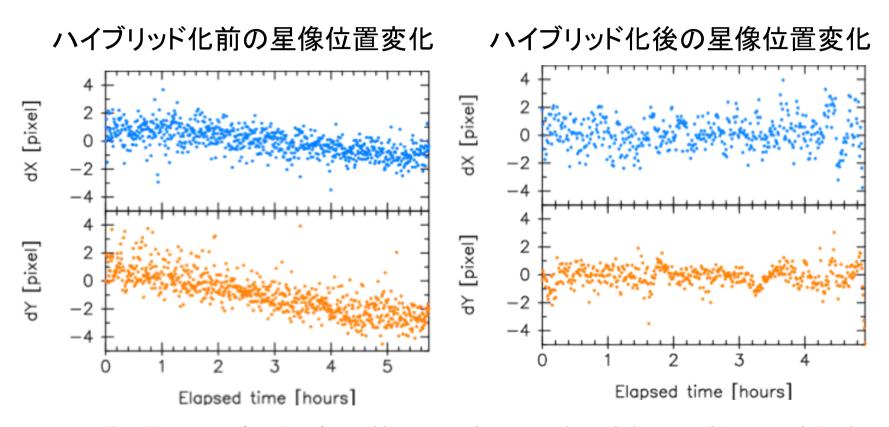
ISLE 観測モード別申請状況

ISLE 割当夜数/共同利用夜数

最近のISLE採択課題一覧

Semester	PI	Imaging or Spectroscopy	Title				
2013B	小野里•他	Spectroscopy	中間赤外から遠赤外にかけて大きな増光を示し た正体不明の天体を探る				
	成田•他	Imaging	近傍の低温度星を公転するトランジット惑星候補 の高精度測光確認 II				
	福井•他	Imaging	近赤外測光観測によるトランジット・ウォーム ジュピターWASP-80bの大気調査				
	福井•他	Imaging	近赤外測光観測によるトランジット・スーパー アースGJ3470bの大気調査				
2013A	望遠鏡改修の為、ISLE の公募なし						
2012B	福井•他	Imaging	比較的長周期のトランジット惑星における TTV 探索				
	成田•他	Imaging	太陽系近傍の低温度星を公転するトランジット惑 星候補の高精度測光確認				
	末永•他	Imaging	おうし座分子雲における惑星質量候補天体の近 赤外観測				

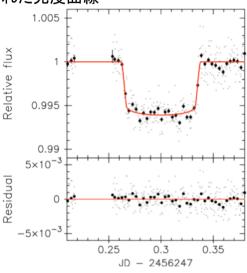
2013/08/01


ISLE 関連出版状況

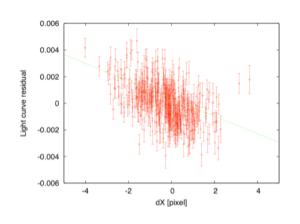
- Science Papers (2012-2013)
 - Otsuka et. al. (2013), "The Detection of C60 in the Well-characterized Planetary Nebula M1-11",
 Ap.J., 764, article id. 77, 20 pp.
 - Fukui et. al. (2013), "Optical-to-near-infrared Simultaneous Observations for the Hot Uranus GJ3470b: A Hint of a Cloud-free Atmosphere", Ap.J., 770, article id. 95, 13 pp.

ISLE: ここ1年の開発

- 高精度ガイド(ハイブリッド・オートガイド)の実現
 - 従来のオフアクシスガイドの限界
 - <u>数時間で数画素(0.245 arcsec/pix) の追尾誤差</u>
 - トランジット観測のような高精度測光には、この追尾誤差が測光誤差に寄与する
 - ハイブリッド・オートガイド
 - 望遠鏡の追尾誤差はオフアクシスガイドで修正
 - オフアクシスガイドで生じる僅かな追尾誤差を、観測画像より検出し、フィードバック
 - Sub-pixel の精度で星像を固定できるようになった。

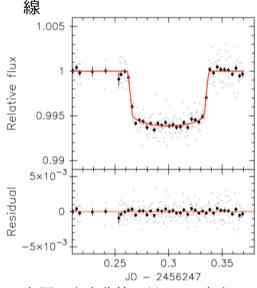

ISLE:ハイブリッド・オートガイドの効果

ISLE検出器上での星像の位置変化の様子。上のパネルはX(東西)方向、下のパネルはY(南北)方向の変位を示す。ハイブリッド・オートガイドによって、星像位置が固定されていることが判る。Y方向と比較して、X方向にばらついているのは望遠鏡の特性で、今回の改修により緩和されると期待している。


ISLE:ハイブリッド・オートガイドで 得られたトランジット光度曲線

ハイブリッド・オートガイドにより得られた光度曲線

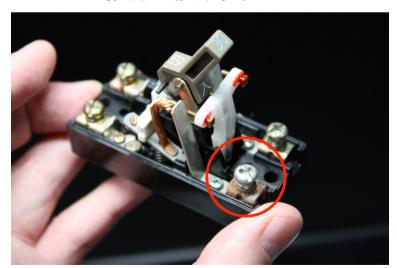
(上パネル) J=9等台のトランジット惑星系に対するISLE/Jバンドでの光度曲線。ハイブリッド・オートガイドを使用して観測。灰色の点は30秒露光のデータ、黒の点は5分ビニングしたデータ。赤実線はベストフィットのトランジットモデルを示す。(下パネル)モデルとの残差を示す。30秒露光データの残差のRMSは0.15%。


光度曲線の残差とX方向の変位の相関

左図の光度曲線のモデルに対する残差とX方向の変位量との相関図。左上から右下に向かう相関が見られる。 緑の点線は直線フィットの結果。

つまり、X方向の位置ずれに伴う明るさの変化がみえている。これを補正すると、右図の結果を得る。

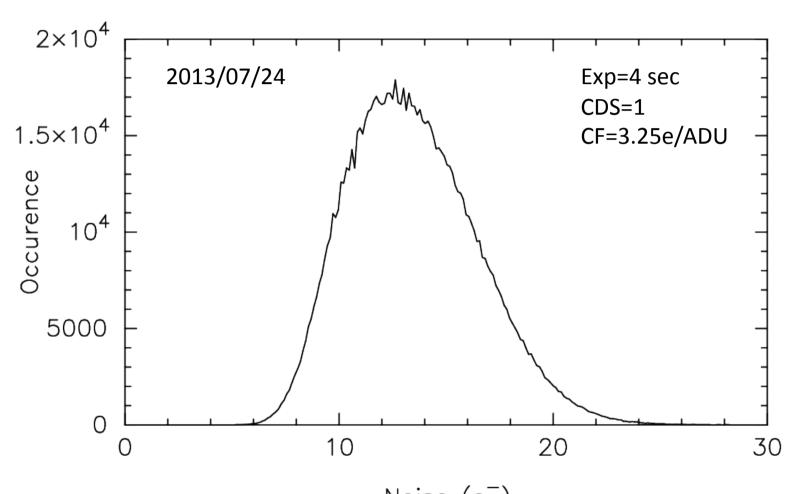
X方向の変位量で補正後の光度曲線



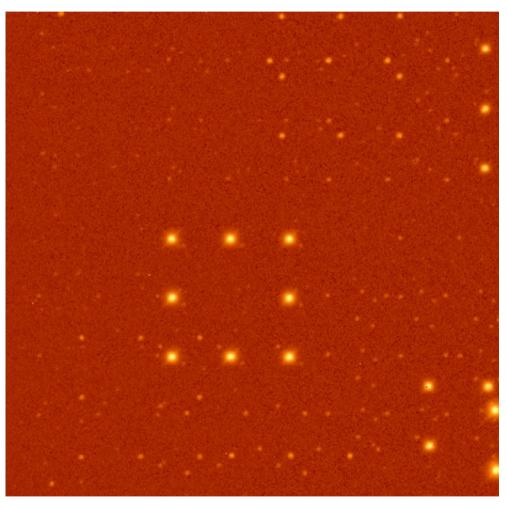
左図の光度曲線に対し、X方向の変位量で測光値の補正を行ったもの。30秒露光データのベストフィットモデルに対する残差のRMSは0.12%と、補正前に比べて改善がみられた。

この1年のISLE関連のトラブル

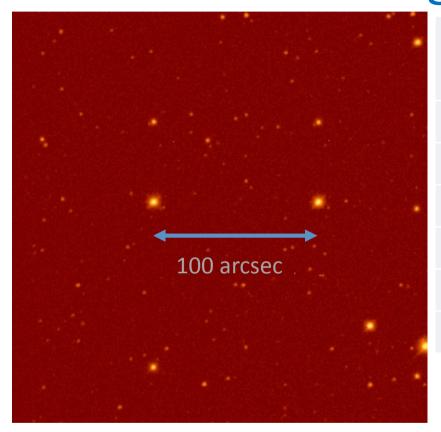
- ISLE オフアクシス・ガイダ の飛び
 - ガイド中に、ガイド星がガイド窓から外れる減少がしばしば見られた。原因は、ガイドソフトのバグで対応中。
- ISLE カメラ側へリウムホー スのリーク
 - 検査の結果、ジョイントから 漏れている可能性が濃厚。
 - 交換した。


- ISLE コリメータ側冷凍機の停止(11/28)
 - 電源を供給している、 NFBのケーブル端子が 錆びて、供給電位低下。 交換後復帰。

望遠鏡制御系改修後の試験状況


- 新制御系に合わせた、通信ソフトウェアの改修 はほぼ済んだ
- ノイズテスト: 有為なノイズ増加を認めず
- 撮像観測試験
 - Dithering: 指令通りに望遠鏡が動くことを確認
 - スリット位置に、一発で星を導入できることを確認
- AG つなぎこみ
 - 概ね期待通りに動くことを確認
- Cassegrain Instrument Rotator 原点調整済
- ・ 分光試験:悪天候のため、実施できていない

望遠鏡制御系改修後の ISLE read noise


Noise (e⁻) 制御系更新に伴う、有為なノイズの増加はなし。

望遠鏡制御系改修後のdithering test

Dithering pattern=2, Spacing=30 arcsec で取得した画像。Dither にかかる時間は一瞬で、きびきび動く望遠鏡が気持ちいい。

望遠鏡制御系改修後の dithering test: RA

RA 方向に dithering

#	Left		Rig	ght	Distance	
	Х	У	Х	У	L->R	R->L
1	350.2	554.5	755.0	555.7	404.8	405.0
2	350.0	555.4	754.3	554.5	404.4	403.9
3	350.4	554.0	754.3	554.0	403.9	403.4
4	350.9	554.9	756.1	554.6	405.2	
				avg.	404.5	404.1
				σ	0.5	0.8


Image scale= 0.246 arcsec/pix なので、 移動距離は

1. L->R: 99.52±0.14 arcsec

2. R->L: 99.41±0.20 arcsec

指令した移動距離は 100arcsec。おおむね、与えた移動量を満たしている。

望遠鏡制御系改修後の dithering test: DEC

DEC 方向に dithering

#	Upper		Lov	wer	Distance	
	X	У	х	У	U->L	L->U
1	352.3	555.2	351.0	147.3	407.9	408.1
2	351.6	555.4	351.0	148.8	406.6	406.7
3	352.3	555.4	352.2	149.0	406.4	405.8
4	352.9	554.8	353.0	146.7	408.1	
				avg.	407.3	406.8
				σ	0.9	1.1

Image scale= 0.246 arcsec/pix なので、 移動距離は

1. U->L: 100.19±0.21 arcsec

2. L->U: 100.08±0.28 arcsec

指令した移動距離は 100arcsec。与えた移動量を満たしている。

こんな画像が撮れるようになりました

Date: 2013/07/24

Object: M39 (open cluster)

Instrument: ISLE

Filter: J-band

Exposure: 4 sec×78

Actual duration: 18 min.

Dot matrix design: Izumiura,

Data acquisition: Yanagisawa