First light observation of GIGMICS

(Germanium Immersion Grating Mid-Infrared Cryogenic Spectrograph)

by Kanata 1.5-m telescope at Higashi-Hiroshima Observatory

Yasuhiro HIRAHARA (Nagoya University), yasu@nagoya-u.jp, & GIGMICS team:

Yoshio TATAMITANI, Keishin AOKI, Kanako OTA, Sho SHIBATA,

Tsuyoshi HIRAO, Noboru EBIZUKA(Nagoya University)

Michitoshi YOSHIDA, Koji KAWABATA, Makoto UEMURA, Takashi OOSUGI(Hiroshima Univ.) Ryuji FUJIMORI, Hiroki OHIWA, Hisayuki NAGAHIRO, Kentarou KAWAGUCHI(OkayamaUniv.)

Abstract: We have developed a germanium immersion grating mid-infrared cryogenic spectrograph (GIGMICS) designed for the Nasmyth focus stage of NAOJ Subaru 8.2-m telescope, which operates at N-band (8-13 μ m) in wavelength (λ) with maximum resolving power R($\equiv \lambda/\Delta \lambda$) ~ 50,000. A single crystal germanium echelle immersion grating (30 \times 30 \times 72 mm) for collimated beam size of 28 mm φ was fabricated by utilizing ultra precision micro-grinding method coupled with the ELID (ELectrolytic In-process Dressing) technique (Ohmori, H. 1992, Ebizuka et al. 2003). After the critical test for the application to the laboratory gas-phase IR high-resolution spectroscopy(Hirahara et al. 2010), we have conducted the "first light" astronomical observation of GIGMICS by the Kanata 1.5-m telescope at Higashi-Hiroshima Observatory from Jan. to Apr., 2011. Toward many astronomical objects such as the Moon, Venus, Jupiter, circumstellar envelopes of late-type stars, proto-planetary nebulae, and interstellar molecular clouds in the vicinity of star-forming regions, we conducted spectroscopic observations in the N-band region.

II: Development of GIGMICS

"Key device" : Immersion Grating: is ----

Diffraction grating with refractive index *n*>1 material in the optical path.

Because of the large optical path difference, the size of the spectrograph can be effectively reduced by 1/n for the same $R = \lambda/\Delta\lambda = \Delta L/\lambda$

III: First Light Observation

"Kanata": "Higashi-Hiroshima Observatory, Hiroshima Astrophysical Science Center Hiroshima University 1.5-m telescope =Subaru IR Simulator of NAOJ. height 503m

Surface Roughness:11.5 nm rms decrease of *R* by wavefront error:

Conventional Grating Immersion Grating

This study: First fabrication of Germanium (n=4.0) Immersion Grating by <u>RIKEN's ELID</u> (ELectrolytic In process Dressing) Micro-machining Method (Ebizuka et al., 2003).

GIGMIGS on Nasmyth Stage of "Kanata" Jan-Apr of 2011

IV: Result: (I) Full N-band Echelle Spectrograph toward the Moon Total pixels: 412 x 4260, Identified diffraction order: 330-565

Observation

- Date: Apr. 4, 9, 10, 13, 14, 16 2011
- Method: ON/OFF
- Integration time: <50secs.
- Mosaics of 8 echellegrams
- In total, 377 telluric lines are assigned to CO₂, H₂O, O₃, and N₂O
- Definite assignment of diffraction order

V: Result: (II) Mapping observation of [S IV] in NGC7027

The planetary nebula NGC7027 is one of the most famous stellar object. It has HII

magnetic dipole transition

* * *

round

state

J = 3/2

 $\overline{J} = 1/2$

L-S coupling

degenerate

10.510um

VI: Result: (III) Detection of new CO₂ transition in Venus

Venus, the second planet of the solar system, is similar to Earth in terms of size and mass. However, the CO₂ vibrational-rotational transitions Spectra detected from Earth and Venus (a) ${}^{12}\text{CO}_2 v_3 \leftarrow v_1$

region near the central star, and also expanding molecular cloud in the outer envelope. The [S IV] emission is detected by the ISO SWS observation.

Observation

- Date: Apr. 5,13,17 2011
- Method: ON/OFF
- Integration time: 1 min.
- Position: center + outer 14 points
- Spatial resolution: 0.612arcsec

Baseline subtracted Spectrum of [S IV]

Background component

atmospheric composition and the structure are significantly different. Above all, the atmosphere of Venus is composed dominantly of CO_2 .

Observation

- Date: Apr. 2, 6, 10, 13 2011
- LST: AM 5:30 ~ 6:00
- Wavelength: $8.0 \sim 10.8 \ \mu m$
- Integration time: 200 seconds
- Point : center of Venus

≻Echellegram of Venusian atmosphere at 10.1~10.8 µm *: ${}^{12}\text{CO}_2 v_3 \leftarrow v_1$ \square : ${}^{12}\text{CO}_2 (v_3 + v_2) \leftarrow (v_1 + v_2)$ $\bigcirc: {}^{13}\mathrm{CO}_2 \ \nu_3 \leftarrow \nu_1$

ground state

 $--\nu_{3}+\nu_{2}$

 $\widetilde{\nu}(c\bar{m}^{1})$

3000+

Detection of (c), (d) transitions reflects ➢ Vibrational Energy Level Diagram of CO₂ high temperature and CO₂ abundance of Venusian atmosphere.

(c) ${}^{12}\text{CO}_2 (v_3+v_2) \leftarrow (v_1+v_2)$: 292±22 K (d) ${}^{13}\text{CO}_2 v_3 \leftarrow v_1: 373 \pm 69 \text{ K}$

SPIE Astronomical Telescopes and Instrumentation 2012 Jul. 1

≻Energy level diagram of Sulfur Result

[S IV] is spread about 0.10 light years in the southwestern area of NGC7027. The observed wavelength of [S IV]: $\lambda \text{center} = 10.51185 (23) \mu m (Vrad = 23 \text{ km/s}),$ $\Delta\lambda$ HPFW=0.001µm

- cf. previous study of [S IV]: R=2,000 (ISO SWS: Bernard-Salas, et al 2001)
- Rest wavelength of [S IV] in laboratory: $\lambda_{lab} = 10.5105(1) \,\mu m$

V_{LSR} ~ 38km/sec for [S VI], which is comparable to the red-robe outflow for CO₂ (Nakashima et al. 2010)

 $\Delta\delta$

-10 NGC 7027 H2 MA

-10

-5

≻Spatial distribution of [S IV]

0

5

Offset (arcseconds) $\Delta lpha$

10