

近赤外分光観測による小惑星表層の熱変成度の調査

岩井 彩(神戸大学) 伊藤 洋一(兵庫県立大学) 寺居 剛 柳澤 顕史 黒田 大介(国立天文台)

・小惑星表層の組成は、反射スペクトルの形状から推定する。S型小惑星のスペクトルには1µmと2µmに吸収帯が見られることから、表層は輝石とカンラン石が主成分だと考えら れる。一方、自転による反射領域の移動に応じて偏光度が時間変動するS型小惑星が観測されている。偏光度は組成ごとに異なるため、このような偏光度変動は衝突によって 表層が加熱・溶融を受けて、組成が局所的に変化したためと考えられる。本研究ではS型小惑星(6)Hebe,(3)Junoの吸収帯強度の時間変動を調べることで衝突加熱の痕跡を地 上観測から測定することを目的に、OAO/ISLEを用いた近赤外分光観測を行った。

イントロダクション

■S型小惑星の表層

1994)

ロ小惑星とは

•分光観測で得られる反射スペクトルから表層の組成を推定 ・主にケイ酸塩鉱物から成るS型や炭素化合物・水和物を含むC型など多様な種類

•現在までに多数の衝突を経験しており、表面は強い熱変成を経験した可能性

するS型小惑星が観測されている(Takahashi et al., 2009. Broglia et al., 1994,

Broglia and Manara 1990). →表層での組成の不均質性を示唆

・可視光波長域の偏光度が、小惑星の自転による反射領域の移動に伴って変動

•(6)Hebeの偏光度変動は、組成やレゴリス粒径の不均質性が原因(Broglia et al.,

▶S型小惑星 •S型小惑星のスペクトルは1μmと2μmに 射率 鉄の強い吸収帯が見られる 格化した。 •表層は輝石((Ca,Mg,Fe)2Si2O6)や カンラン石((Mg,Fe)2SiO4)だと考えられる

近赤外分光観測

□観測詳細

□観測天体

日程: 2012年4月27,28日、5月4,5,6日 望遠鏡: 岡山天体物理観測所188cm望遠鏡 観測装置: ISLE 波長分解能: J 2,200 H 3,800 K 2,100 波長域: J 1.11-1.32µm H 1.50-1.79µm K 2.02-2.37µm スリット幅 1".5 積分時間: J 30秒 HK 30秒

図1:S型小惑星の平均スペクトル(DeMeo et al., 2009) 青は輝石の吸収帯波長域、赤はカンラン石の吸収帯波長域 0.30 0.60 0.90 1.20 1.50 1.80 2.10 2.40 2.70 波長(μm)

4月27,28日 (6)Hebe<前半夜> 5月4,5,6日 (6)Hebe<前半夜>, (3)Juno<後半夜>

□観測時の小惑星の位相(解析済み分)

4月27日					4月28日				
J	自転位相	ΗК	自転位相		J	自転位相	ΗК	自転位相	
1	0.00-0.013	1	0.019-0.035		1	0.359-0.367	1	0.380-0.389	
2	0.045-0.060	2	0.067-0.080		2	0.433-0.442	2	0.455-0.463	
3	0.088-0.100	3	0.108-0.122		3	0.507-0.516	3	0.528-0.537	
4	0.167-0.175	4	0.186-0.195		4	0.582-0.591	4	0.604-0.612	
5	0.241-0.250	5	0.261-0.270		5	0.658-0.666	5	0.769-0.688	
6	0.317-0.326	6	0.337-0.346		6	0.733-0.742	6	0.755-0.764	
7	0.400-0.409	7	0.422-0.431		7	0.808-0.816	7	0.830-0.839	
8	0.477-0.485	8	0.498-0.507						

1994)	
≻衝突による小惑星表層の部分溶融	
 ・メインベルトに分布する小惑星同士の衝突速度は平均5km/s(Vadder 1998) 	

・衝突された小惑星表層が50GPaの衝突圧力を受けた場合、その領域の温度 は1500°C程度まで上昇し、部分溶融する(Hirata et al., 2009)

			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 組成	輝石	カンラン石	•輝
融点(°C)	1560	1900	●輝
			$\int \mathbf{r}$

衝突時の表層の温度によって 石のみが溶解 石とカンラン石の両方が溶解 の2通りが考えられる

衝突現象による表層の部分溶融に注目!!

◆輝石のみが溶解する場合

比重が軽くなった輝石が表層を覆うため、表層は輝石の比率が高くなる よって輝石が示す2µmの吸収帯は深くなる

解析 □解析手順(IRAF使用) •A画像とB画像の引き算(A-B) •フラット処理 ・宇宙線やホットピクセルの除去 •波長同定(J: Xe, HK: Arを使用) •背景光除去 ・スペクトル抽出 •標準星補正

図2:A-B画像 (左:Jバンド、右:HKバンド)

◆輝石とカンラン石の両方が溶解する場合 重い鉄を含む輝石とカンラン石は溶融した液層の底に沈むため、表層は鉄が少 ない軽い鉱物(エンスタタイトなど)の比率が高くなる. よって輝石とカンラン石が示す1µmと2µmの吸収帯は浅くなる

反射領域ごとに1µmと2µmの両吸収帯の強度を調べることで、領域ごとに 衝突加熱の程度を調べることができる

▶ 観測対象とする小惑星 (6) Hebe, (3) Juno ・偏光度変動が確認されているS型小惑星

目的 小惑星表層の熱変成度を調べるために、偏光度が時間変動するS型小惑星の 近赤外分光観測を行う •1μmと2μmの吸収帯の強度変動から、表層の組成分布の違いを求める

→衝突加熱による小惑星表層の熱変成過程の解明

結果 口得られたスペクトル

(左図)4月27日のバンド 1-8は観測フェーズの数字と対応 ※7のスペクトルはノイズが大きいため本発表では載せていない (右図)4月28日のバンド 1-7は観測フェーズの数字と対応 縦軸は0.1ずつオフセットしている

考察・今後の課題

本発表では、比較的大気スペクトルの除去できているバンドについて考察する ロ吸収帯強度の評価

•1.20-1.32μmを線形近似し、スペクトル傾斜を算出

図3:位相と1.20µm-1.32µmの傾き

ロ今後の課題

√標準星スペクトルによる大気スペクトル補正の精度を上げ、HKバンドのスペクトルと合わせて変動を調べる ✓未解析分光画像の解析を進める ✓観測時のライトカーブから偏光度変動の領域との相関を確かめる

•ほぼ全位相(0.00-0.816)を観測 ◆スペクトル傾斜が変動するか 誤差を上回る変動が確認できたので、変動はあると考えられる 表層の組成分布が領域ごとに違いが見られる.位相0.3-0.6辺りより位相0.0-0.2辺りのほうが傾きが浅い. →位相0.00-0.2辺りの領域では、鉄が少ない軽い鉱物(エンスタタイトなど)が他の領域より多く含まれるのではないか →輝石・カンラン石両方が溶融するような衝突・高温を経験したのではないか ◆スペクトル傾斜の変動に周期性はあるか →同位相で取得されたデータが少なく、確認できない、未解析分のデータ点を増やす必要がある ◆偏光度変動がある領域との相関はあるか →ライトカーブデータを取得済み.先行研究と自転位相の整合性を確認する