OAOWFCによる Wolf-Rayet星探索サーベイ計画

奥村真一郎(日本スペースガード協会)田中培生、高橋英則(東京大学)柳澤顕史(国立天文台・岡山)

- ・Wolf-Rayet (WR)星研究の意義
- ・WR星サーベイの現状
- ・われわれのWR探索観測
- OAOWFCを用いたWR探索計画

"Conti scenario"

- ・WR星…大質量星の最終進化段階
- ・WR星の空間分布、サブクラス分布は クラスターの年齢や質量関数の指標
- ・銀河系内には約6000個のWR星が 存在すると言われている (Shara+1999; Homeier+2003; Hadfield+2005)

銀河系内には約6000個のWR星が 存在すると言われている。が…

・可視光でのサーベイ (van der Hucht 2006)
 → 検出数300個

・最近の赤外サーベイ

- 2MASS, Spitzerデータを用いたColor-Color diagramによる探索(Mauerhan+2011)
- 狭帯域フィルターによる探索(Shara+2011)

赤外サーベイの結果を合わせても、 発見数はせいぜい500個!

これまでのWR星サーベイ

・まだ予想値より少ない

・減光の大きい領域に未発見のWR 星が埋もれている

われわれのWR探索手法

・2µm帯の狭帯域フィルター2枚と
 広帯域フィルター(Ks)を利用した
 効率的な観測

NIR spectra of WR stars

2枚の狭帯域フィルター+広帯域フィルターによる観測

N207/Ks-Ratio, N219(N187)/Ks-Ratio Color-Color Diagram

望遠鏡	<image/>	東京大学 アタカマ miniTAO(1m)	北海道大学 (名寄天文台) pirka (1.6m)	<text></text>
観測装置	GIRCS	ANIR	NICE	ISLE
_{主として使用する} 観測モード	撮像	撮像	分光	分光
基本スペック	視野 6.8' 0.4"/pix	視野 5.3' 0.31"/pix	R~2600	R~2100 (K,mid-dispersion) R~300 (low-dispersion)
限界等級	15.4 (10σ、540s)	20.5-20.8(AB) (5σ、600s)	10.3 (10σ、600s)	14.8 (3σ、600s、)

(写真は各望遠鏡のhome pageより)

これまでの観測

- 系内大質量星形成領域:減光の大きな領域
 W51 (W49, W3/4) (GIRCS: 2009~)
 銀河中心領域 (ANIR: 2009a, 2011a)
 Westerlund (ANIR: 2011a)
- ・系外天体:金属量がOur Galaxyと異なる環境
 ▶LMC/30Dor (ANIR: 2010b, 2011b)

観測例 (Galactic Center)

WR stars around G.C.

39'

5.0' = 11.64 pc for R₀=8.0 kpc $39' \times 15' = 91 \times 35 \text{ pc}$

Mauerhan+ 2010

・領域を厳選して探索 (減光の大きい大質量星形成領域など) ↓ ・広領域サーベイ

(銀河面に沿って)

Filters

N209 : for CIV2078/CIII2108 (WC4-8); Hel2058 (WC9/WN9) N218 : for Hell2189/Br-g2166 (WN3-8/LBV)

Ks : 1990-2310nm (center=2150nm, width=320nm)

OAOWFCによるPerseus Arm, Outer ArmのWR星サーベイ計画

Telescope/Array Area

Field of view Field Filter Limiting mag Integ time/field Obs time

OAO 0.91m / OAOWFC (2kx2k) $180 \deg (l=+30 \sim +210)$ $1 \deg (b=-0.5 \sim +0.5)$ -> 180 deg² 0.92×0.92 deg (1.6"/pix) 220 2 NB + 1 BB(Ks) Ks~14 (10 σ) **0.5 hour 110 hour**

まとめ

・WR星研究の意義とサーベイの現状 →WR星の発見数は、予想されるよりも一桁少ない →埋もれて見つかっていないWR星がまだある。 ・われわれのWR探索観測 →2種の狭帯域フィルターと広帯域フィルターを 利用した効率的な観測。 →2

色図からWC型WR星、WN型WR星をピック アップできるだけでなく、個々の天体の減光量が 評価できる。またMYSOやミラ型星も検出可能。 OAOWFCを用いた探索計画 →北天の銀河面を探索予定。 (Perseus Arm, Outer Armのサーベイ)